If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+15x-168.75=0
a = 2; b = 15; c = -168.75;
Δ = b2-4ac
Δ = 152-4·2·(-168.75)
Δ = 1575
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1575}=\sqrt{225*7}=\sqrt{225}*\sqrt{7}=15\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15\sqrt{7}}{2*2}=\frac{-15-15\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15\sqrt{7}}{2*2}=\frac{-15+15\sqrt{7}}{4} $
| 5r-28=-1+3(2r-8) | | (x*4)/3=12 | | 2+3x+14=7 | | 3a+8=2a-6 | | 3a-8=2a+6 | | 6x-4=3x-6 | | 3x-27+3=-7x | | x^2+x*3-20=60 | | 3∙(x-2)=2x+4 | | X+5/3=2x/5 | | X+20y=100 | | 4x+3=2x–8 | | x/(3)+5/2=(-3)/2 | | 2x+4/4x=20 | | 2x+3=9+3x | | (8x+3)/3x=2 | | (x+5)/3=2x/5 | | 3x-25=×-5 | | (2x+4)/4x=20 | | X^0.5=8x= | | 4m-24+24=6 | | 3/8x+11=-21 | | 2x+4-4=20 | | 5×+5=9+3x | | 6x-7=12x+23 | | 3q/10=6 | | 4(1+x)=4+4x | | -4/7p+(-2/7p)+1/7=0 | | 17-y=2(y-2) | | -2h+8=-3h+14 | | a/5=17/16 | | 17x+48=2x+18 |